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I. INTRODUCTION

The problem of pattern formation is one of the most ra
idly developing branches of nonlinear science today~see,
e.g., @1#!. In particular, the study of the dynamics of fron
between two phases~interfaces! has motivated a large bod
of work in the area@2#. This type of processes occur in
variety of nonequilibrium systems, including physical~vis-
cous fingering@3#, electrodeposition@4#, crystal growth@5#,
etc.!, chemical~reactions in continuously fed open reacto
@6#, etc.!, and biological ones~growth of bacterial colonies
@7#, etc.!. In many cases the motion of the interface is mu
slower than the processes that take place in the bulk of
phases~such as heat transfer, diffusion, etc.!. In those cases
the scalar field governing the evolution of the interface i
harmonic function and, therefore, it is reasonable to call
whole processLaplacian growth. Furthermore, when a two
dimensional description is possible~as, for example, when
the relevant quantities can be averaged along one direc!
we talk about two-dimensional~2D! Laplacian growth. In
this paper we will be concerned with processes that al
this decription.

*Electronic address: silvina@df.uba.ar
†Electronic address: mariner@lanl.gov
571063-651X/98/57~3!/3063~10!/$15.00
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The physical meaning of the scalar field involved in t
description differs from system to system. For example, i
a temperature in the Stefan problem, a concentration in
case of solidification, an electrostatic potential in ele
trodeposition, a pressure in viscous fingering in Hele-Sh
cells, etc. In real systems surface tension is usually pre
and it prevents the interface from developing features at v
small length scales. Furthermore, surface tension is
quently the factor that determines the asymptotic evolut
of the system. In fact, experiments in Hele-Shaw ce
showed that the system evolved towards a particular s
tion, although, in theory, there was a continuous set of p
sible long-term behaviors@8#. This selection problem re
mained unsolved for a long time until it was shown th
surface tension could provide the necessary selection me
nism @9#. On the other hand, although some solutions in
limit of zero-surface tension were obtained and stud
@10,11# most of them developed finite-time singularities v
the formation of cusps@12,13# ~unless they involved some
kind of symmetry that prevented this from happening as
@10#!. For this reason,the study with no surface tension wa
somehow left aside because it was considered a singular
unrealistic limit.

In spite of this, in previous work@14,15# we showed that
there is a whole class of solutions with zero-surface tens
that remain smooth for all times. Furthermore, the solutio
3063 © 1998 The American Physical Society
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are very general in the sense that no symmetries are
sumed. They reproduce many of the features that are
served in experiments, such as tip splitting, sidebranch
screening, and coarsening, some of which were usually
tributed to the effect of surface tension@9#. As we mention in
@14,15#, the smoothness of the solutions does not imply th
stability. In fact, how some zero-surface tension solutions
altered when they are considered as the initial condition
the equations with nonzero-surface tension has been ex
sively studied in@16#. In any case, we must mention that
wider class of zero-surface tension solutions has been fo
~which includes the ones studied in@14,15# as a particular
case!, which is indeed an attractor in the case of chan
geometry@17#. Most amazingly, this attracting zero-surfa
tension solution reproduces the experimental observatio
a single finger whose width is half the width of the chann
This remarkable and unexpected result implies that ze
surface tension solutions are more relevant for realistic s
ations than has usually been thought of. Under certain
sumptions, we proved the smoothness of the zero-sur
tension solutions for the case in which the interface is o
and infinite and in the case ofchannel geometry. In this
paper we investigate whether a similar situation holds w
the interface is closed. Closed interfaces are relevant in m
experimental situations, such as viscous fingering in ra
Hele-Shaw cells@18#, isotropic solidification, slow elec
trodeposition, etc. We expect our study to be relevant
these cases.

We study in this paper the class of fingerlike solutions
2D Laplacian growth in the case of circular geometry. T
solutions are similar to those introduced in@10#, but with no
symmetries. They are described in terms of a finite num
of time-dependent variables~logarithmic poles!. Therefore
they provide a description of the evolution with a finite num
ber of degrees of freedom. It is worth mentioning that so
tions with logarithmic singularities appear to be generic b
for the radial and for the rectangular channel geometry@24#.
This does not appear to be the case for the ‘‘wedge’’~sector!
geometry, where fractional type of singularities might be
volved @25#. We study under which conditions the logarit
mic pole solutions remain smooth for all times and we fi
sufficient conditions for this to happen. As in the case
channel geometry@14#, these solutions reproduce variou
phenomena observed in experiments@3#. As in nearly inte-
grable systems, in which the soliton solutions of the in
grable limit @19# serve to describe the evolution of the no
integrable case with a finite number of degrees of freed
@20#, we expect these fingerlike solutions to serve as a ‘‘n
linear basis’’ even when surface tension is taken into
count. As in the soliton case, this decomposition in terms
a finite number of degrees of freedom should be good
gardless of whether each individual solution in the ‘‘basi
is stable or not. Thus the relevance of whether they rem
smooth or not goes beyond the limiting case of zero-surf
tension.

The organization of the paper is as follows. In Sec. II
introduce the equations with which we model the problem
interest. We show in this section how to obtain the Laplac
growth equation and present the class of exact solutions
we are going to analyze in the paper. In Sec. III we anal
the class of asymptotic behaviors that remain free of sin
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larities. In Sec. IV we analyze which initial conditions ca
approach the smooth asymptotic behaviors of Sec. III.
Sec. V we introduce a model in order to analyze whether
conditions we find in the asymptotic limit for the solution
be well behaved need to be satisfied before the asymp
regime is reached. In Sec. V we describe a set of numer
simulations to analyze this in more general cases. Finally,
summarize the results in Sec. VI.

II. THE MATHEMATICAL SETTING

We consider a system in two spatial dimensions,R
[(X,Y), composed of two different phases separated b
closed moving interface,G(t). Let us call I the region en-
closed byG and II the region outside. Both regions are sim
ply connected. There is a scalar field,P(X,Y), that describes
the state of each phase, for example, pressure. We ass
that this field satisfies the Laplace equation in region II, s
ject to the boundary conditions of it being constant onG and
that P;2 ln(uRu) as uRu→`. This last condition is suitable
for a case in which region I corresponds to a growing bub
and the quantities have been rescaled so that the extra
rate at infinity is equal to22p @10#. In this way the dynami-
cal problem is described by the following equations:

¹2P50, RPII, ~1!

P;2 ln~ uRu!, uRu→`, ~2!

PuG~ t !50, ~3!

vnuG~ t !52~¹P!n , ~4!

wherev is the interface velocity and the subscriptn repre-
sents the component normal to the interface. This set ha
be supplemented with initial conditions for the form of th
interface.

In order to look for a solution of Eqs.~1!–~4! we identify
the physical space with the complex plane and use the c
formal mapping technique. Thus, we define the complex
ordinate Z[X1 iY[ReiF, in the physical plane, and the
complex pressureW(Z)[P(X,Y)1 iC(X,Y), wherei is the
imaginary unit andC(X,Y) is a real function harmonically
conjugated toP(X,Y). Then, we introduce amathematical
plane, which we also identify with the complex plane,z[x
1 iy[reiw, and define a time-dependent conformal m
f , Z[ f (z,t), from the region outside the unit circle in th
mathematical plane (ur u.1), to region II of the physical
plane. In this way, the moving interfaceG is the image of the
border of the unit circle under the conformal map. In the
new coordinates Eqs.~1!–~4! reduce to~see, e.g.,@10,15#!

]W

] z̄
50, uzu.1 ~5!

dW

dz
→2

1

z
as z→`, ~6!

ReW50 at uzu51, ~7!

and the Laplacian growth equation~or LGE @14,15#! for
f (z,t):
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ReS z
] f

]z

] f

]t D 51 at ur u51. ~8!

This equation was originally derived in 1945@21# and has
several remarkable properties. It has an infinite numbe
constants of motion@22# ~see also extensions to multidime
sional and multiconnected systems@23#!, and it is integrable
@24#.

Because the mapf must be conformal outside the un
circle, it is necessary that all zeros and singularities of] f /]z
be located inside the unit circle. On the other hand, very
away from the interface all quantities will have the sam
form in both systems of coordinates,z andZ. Therefore we
also require thatf (z,t)'r (t)z for ur u→`, wherer (t) is the
size of the growing domain~unless the domain is fractal!.
Given these features, we propose a solution whose deriva
has the form

] f ~z,t !

]z
5r ~ t !

P l 51
N @z2zl ~ t !#

P l 51
N @z2z l ~ t !#

, ~9!

with r , z l , andzl functions of timet, anduz l u,1, uzl u,1
for all times and 1<l <N. In fact, Eq.~8! has solutions tha
satisfy Eq.~9! which can be written as

f ~z,t !5r ~ t !z2 (
l 51

N

a l ~ t !lnz l ~ t !1 (
l 51

N

a l ~ t !ln@z2z l ~ t !#,

~10!

where

(
l 51

N

a l 50, ~11!

for f to be single valued, and the equations thatr (t) and the
various z l (t) satisfy can be obtained inserting Eq.~10! in
Eq. ~8!. In particular, the functionr (t) is determined by the
areaA enclosed by the curveG in the physical plane. In fact
using the conformal map and Eq.~8! it can be easily shown
that the area satisfiesdA/dt52p. Using then the relation
A5(1/2i )ruzu51 f̄ (] f /]z)dz and definingr 0[r (0), we get

t5
r 22r 0

2

2
1 (

l ,k51

N
a l a k̄

2
lnS 12z l ~ t !z k̄~ t !

12z l ~0!z k̄~0!
D . ~12!

If we substitute Eq.~10! in Eq. ~8! we find that alla l ’s are
time independent and that the dynamics of the polesz l , l
51,N is governed byN complex constants of motionbk
which are given by

bk5
r ~ t !

z k̄~ t !
1 (

l 51

N

a l lnS 1

z l ~ t !z k̄~ t !
21D ~13!

~also see@15#!. Using these constants we can rewrite Eq.~12!
as

t5
r 22r 0

2

2
1

r 0

2 (
k51

N a k̄

zk~0!
2

r

2(
k51

N a k̄

zk~ t !
. ~14!
of

r

ve

In summary, the solution~10! is uniquely determined by
the constantsa l and the functionsr (t) and z l (t), 1<l
<N. Hence, the zeros of] f /]z, zl , 1<l <N are also de-
termined by these quantities and are, therefore, function
time.

Now, this construction allows us to obtain a solution
the original problem while the poles and zeros of] f (z,t)/]z
remain inside the unit circle. Since they evolve in time it
not clear that, even if they are inside the unit circle att50,
they will remain inside for all times. The aim of this paper
to obtain conditions that guarantee that this happens for
times. This is similar to what we have done for chann
geometry@14,15#. Actually, in this case, we will usually con
siderr as the independent variable and writezk(r ) andzk(r ).
It is clear that differentiating Eq.~13! by r we immediately
obtain evolution equations for the poleszk(r ) as functions of
r . Given r andzk(r ), 1<k<N, we obtaint(r ) through Eq.
~12! or ~14!. This way of constructing the solution will work
while t is an increasing function ofr . Actually it is possible
to show that, if there is a value ofr (r 5r 0) at which
dt/dr50, then there is at least a zerozk or a polez l such
that uzk(r 0)u51 or z l (r 0)51. Thus the invertibility oft(r )
is a necessary condition for the zeros to be inside the
circle. In order to determine the conditions under which t
solution remains valid for all times, we analyze first th
asymptotic behaviors~ast→`) that are compatible with the
zeros and poles remaining inside the unit circle. We th
study the subclass of initial conditions which can provi
these asymptotic behaviors.

III. POSSIBLE ASYMPTOTIC BEHAVIORS

We now look for the possible asymptotic behaviors th
are compatible with two constraints of the problem: the co
stants of motion defined in Eq.~13! and the condition
uz l (t)u,1 for all times andl ’s. Since the quantityr 2(t) is
mainly determined by the total area enclosed byG, we ex-
pect it to be an increasing function of time. Therefore w
look for asymptotic behaviors for whichr (t)→` as t→`.
Let us write the constantsa l as

a l [ua l ueil l , 1<l <N ~15!

and the location of the polesz l as

z l ~ t ![uz l ~ t !ueig l ~ t !, 1<l <N. ~16!

We see that an asymptotic behavior that allows the con
vation of the quantities in Eq.~13! is

r→`, ~17!

uz l u→1, 1<l <N. ~18!

In this way the divergence of the term proportional tor in
the constantsb l can be canceled out by another diverge
term,a l ln(1/uz l u221). In particular,if all l l ’s are different
we obtain, under certain conditions that we will discuss la
and which guarantee that allg l ’s approach different values
as r→`, the following relations:
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uz l u'12
d l

2
e2r /ua l u, ~19!

g l 'l l 1
e l

r
as t→`, ~20!

for 1<l <N. In Eqs.~19! and~20! d l ande l are real con-
stants that can be obtained from the conserved quantitieb l

in the limit of r→`, when alluz l u→1 and allg l ’s approach
different values. They are

lnd l 5ReFb l

a l

2 (
kÞl

ak

a l

ln~ei ~ll 2lk!21!G , ~21!

e l 5ImFb l e2 il l 2 (
kÞl

uakuei ~lk2l l !ln~ei ~l l 2lk!21!G .
~22!

We have to look now at how the zeros of] f /]z, zk(t),
evolve whenr (t) and the poles behave as in Eqs.~17!–~20!.
In particular, we do not know if it is necessary to impo
some other restrictions on the asymptotic behavior for
zeros to remain inside the unit circle. In order to analyze t
let us defineP(z)[)k51

N (z2zk). Using Eqs.~9! and~10! we
can write

P~z!5r )
l 51

N

~z2z l !1 (
k51

N

ak)
l Þk

~z2z l !. ~23!

It is possible to show thatP(z) is the characteristic polyno
mial of the matrixA defined by

Ak j5zkdk j2
ak

r
, ~24!

where dk j is the Kronecker symbol. Thus the zeroszk of
P(z) are the eigenvalues of the square matrixA. According
to Gerschgorin’s theorem~see, e.g.,@26#! the eigenvalues o
an N3N square matrixA lie in the union of theN disksGk

defined byGk :uz2Akku<( j 51,j 5” k
N uAk ju. Therefore applying

Gerschgorin’s theorem to our matrixA we find that its ei-
genvalues, or equivalently, the zeroszk of ] f /]z satisfy

Uzk2zk1
ak

r U< 1

r
minH (

l 5” k

N

ua l u,~N21!uakuJ
for all 1<k<N. ~25!

Thus, using Eqs.~17!–~20! we find that

zk→eilk as r→`. ~26!

Furthermore, we get from Eq.~23! the following relation:

ak

r
5~zk2zk! )

l Þk
S zk2zl

zk2z l
D5~zk2zk! )

l Þk
S 11

z l 2zl

zk2z l
D ,

~27!

provided that allzk’s are different. This holds, in particular
when the asymptotic behavior is described by Eqs.~19! and
~20! and all the arguments,l l , are different. We see from
e
,

Eq. ~27! that its right hand side goes to zero asr→`. We
then conclude that (zk2zk)→0 asr→`. Moreover, assum-
ing that ak /r is small enough for eachk we get from Eq.
~27! the relation

zk5zk2
ak

r
1

1

r 2 (
l Þk

aka l

~zk2z l !
1OS F uau

r G3D . ~28!

Combining Eqs.~28! and ~19! and ~20! we obtain

zk'eilkS 12
uaku

r
1 i

ek

r D as r→`. ~29!

Thus uzku2'122uaku/r ,1 for r big enough.
Hence, we find that, forr big enough, it is possible to

have a solution of the form~10! such that all zeros and pole
of ] f /]z lie inside the unit circle. Such a solution has th
property that the argument of each polezk and each zerozk
differ from the argument of the corresponding constantak by
a very small amount, which is of the order of 1/r with r big.
The fact that cos(gk2lk).0 for r big guarantees, on on
hand, that the sum of the two divergent terms in the c
stantsbk goes to a finite limit asr→`. On the other hand, it
guarantees that the zeros remain ‘‘behind’’ the poles a
cannot reach the unit circle at a finite value ofr . We show a
schematic picture of this behavior in Fig. 1. In the next tw
sections we analyze whether the alignment of the singul
ties and thea ’s ~i.e., lk'gk for all k) needs to be satisfied
also for small values ofr , in order for an initial condition to
be able to reach the smooth asymptotics just described.

This asymptotic regime shares some properties with
one we found in the channel and in the infinite line geo
etries@14,15#, i.e., a case in which the interface is not close
In that case we used a conformal map that mapped the
axis of the mathematical plane onto the physical interfa
but still it is possible to make some connections with the c

FIG. 1. Schematic picture of how poles and zeros can be
tributed in the mathematical plane in the asymptotic limit describ
by Eqs.~19!–~22!. The solid line indicates~part of! the border of
the unit circle. The cross indicates the location of a polez1 and the
small circle that of a zeroz1 for r big enough. The difference
between both isz12z15a1 /r , which is also shown in the figure a
the arrow of length ofO(1/r ). The distance fromz1 to the border is
O(e2ua1u/r). Given that the arguments ofz1 anda1 are almost equal
@they differ by a quantity ofO(1/r ) as indicated in the figure# z1

lies inside the unit circle and further away from the border thanz1,
its distance beingO(2ua1u/r ).
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we are analyzing now. In particular, it is possible to show
the present case that, asr→`, the interface develops ‘‘stag-
nation points,’’ i.e., points that stay almost fixed during th
evolution. Let us remember that the physical interface
given by the curvef (z5eiw) with 2p<w<p. Using the
formulas that describe the asymptotic regime, Eqs.~19!–
~22!, and Eq.~13! we find

f ~z5eigk!5bk2akln21OS uau
r D , ~30!

where care should be taken in order to choose the argum
of the logarithms. In any case, this shows that there are
many stagnation points as poles and that their location
determined by the constants of motion of the problem. O
the other hand, if we consider a range of anglesw in a small
neighborhood ofgk we find

f ~eiw!5bk2akln21 iakarctanF w2gk

12uzku
G1OS uau

r D .

~31!

Since 12uzku→0 asr→`, the argument of the arctan in Eq
~31! can be very big even ifw2gk is very small. In fact, we
can always findD5h(12uzku) such thath@1 butD!1. In
this way we can consider the range of angle
wmin[gk2D<w<wmax[gk1D for which Eq.~31! is valid.
On the other hand, sinceh@1, then

2arctanFwmin2gk

12uzku
G5arctanFwmax2gk

12uzku
G5arctanF D

12uzku
G

5arctan@h#'
p

2
. ~32!

Thus we obtain from Eq.~31! the relation

f ~eiwmax!2 f ~eiwmin!5 ipak . ~33!

This implies that the interface has ‘‘gaps’’ around each sta
nation point of widthpuaku with an orientation that depends
exclusively on eachak . We call a finger the region between

FIG. 2. ~a! Physical interface at different times for a solution o
the form~10! with N55, $ak%k51

N as in Eq.~35! with L50.4, and
$zk(r 0)%k51

N as in Eq.~36! with uzk(r 0)u50.1 andr 051. The loca-
tion of the stagnation points is indicated with asterisks. A straig
line of lengthpa1 along the vectoria1 has been drawn inside the
corresponding ‘‘gap’’ of the interface.~b! Similar to ~a! but here
gk(r 0)5lk(r 0)1p for all 1<k<5. In this case the solution devel-
ops cusps at a finite time.
s

nt
as
is
n

s

-

two gaps. We illustrate this in Fig. 2~a! where we have plot-
ted the physical interface for a solution of the form~10! with
N55, that remains smooth for all times. There we indica
the location of the stagnation points with crosses. We h
also drawn a straight line of lengthpa1 along the vectoria1
inside the corresponding ‘‘gap’’ of the interface. We obser
a total of five gaps and five fingers, i.e., as many as pole

In the case of channel geometry we also found soluti
such that two gaps corresponding to two different po
merged into one gap. We related this to the effect of shie
ing observed in experiments of viscous fingering, since
finger between the two gaps of the analytical soluti
stopped growing after some time. In fact, we can also fi
this type of solutions in the present case. However,
asymptotic behavior is not described by Eqs.~19!–~22!. In
this case two arguments, for example,g1 andg2, approach
the same number asr→`. This number is neitherl1 nor l2,
but lies in between the two. In this case, there are more t
two diverging terms inb1 andb2, asr→`, and one needs to
take all of them into account in order to deduce asympto
expressions for the polesz1 andz2. The asymptotic value of
g1 andg2 is arg(a11a2). Two initially separated gaps de
scribed by$a1 ,b1% and$a2 ,b2% will eventually merge if

cos~u1!.cos~u2!,

sin~u1!sin~u2!>0, ~34!

whereu1,25l1,22arg(b1 /b2).
It should also be possible to find smooth asymptotic

haviors in cases for which some arguments,lk , are equal.
We are not going to analyze these cases in the present p
Thus we will assume from now on thatlkÞl j for all kÞ j .

IV. ABOUT INITIAL CONDITIONS
LEADING TO NONSINGULAR

ASYMPTOTIC BEHAVIORS

Now that we have obtained a set of smooth asympto
behaviors, which are defined by Eqs.~17!–~20!, we look for
sets of initial conditions with finite values ofr that can reach
such asymptotics. A ‘‘good’’ initial condition must be suc
that uzk(0)u,1 anduzk(0)u,1 for all 1<k<N. It is easy to
construct such an initial condition. Given the number of s
gularities,N, we first choose a set ofN complex numbersak
constrained by Eq.~11!. We then chooser (0) so that
NL/r (0),1, whereL[maxk$uaku%. Then, we choose a se
of real numbersuzk(0)u sufficiently small so that all the balls
defined in Eq.~25! are entirely contained in the unit circle
We can always do this provided thatNL/r (0),1. In this
way we guarantee that all zeros satisfyuzk(0)u,1. Now,
even if we construct such an initial condition we cann
guarantee that the solution will be well behaved for all tim
either a pole or a zero might cross the unit circle at a fin
time. Almost all known solutions of Eq.~8! develop finite-
time singularities via the formation of cusps and this h
been the subject of a large amount of work during the p
years. Despite these negative results, we were able to ob
in a different geometry, a class of solutions that remain
smooth for all times@14,15#. Although we do not have a
proof in the present case, we have obtained a set of a

t
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tional constraints that seem to guarantee the smoothne
the solution at all times.

As we mentioned in the preceding section, in the smo
asymptotics each polezk is almost aligned with its corre
spondingak . Thus we ask whether it is necessary that
initial condition have this property too, in order to be able
reach the good asymptotics. In particular, it has been sh
that certain solutions of the form~10! that have some type o
symmetries do remain smooth for all times@10#. These sym-
metric solutions have the ‘‘alignment’’ property during th
whole evolution. A particular subset of this class is the o
for which

ak5Le
2p ik

N
, L real, k51, . . . ,N ~35!

and the initial condition is such that

uzk~ t50!u,1, gk~ t50!5
2pk

N
, k51, . . . ,N.

~36!

It is possible to show that the poles are of the form

zk~ t !5c~ t !e2p ik/N, c~ t ! real, ~37!

for all t>0, so thatgk(t)5lk for all times. We show in Fig.
2~a! various snapshots of the physical interface for one s
symmetric solution withN55, where we see that it doe
remain smooth during the whole evolution. If we take
initial condition as the one described by Eqs.~35! and ~36!
but with gk(0)5lk1p instead of gk(0)5lk , the argu-
mentsgk also remain constant during the evolution. Th
they cannot reach the asymptotic regime described by E
~19!–~22!, since the arguments of the poles will never ali
with those of theak’s. Notice that by choosing this initia
condition we interchange the mutual position of zeros a
poles with respect to the previous case. In this way, the z
reach the unit circle at a finite time and the solution devel
cusps~this case was studied in@13#!. We show a plot of the
physical interface in Fig. 2~b! for one such solution.

Now, the discussion of the preceding section shows
there can be nonsymmetric solutions that give rise to smo
interfaces, at least in the asymptotic regime. In order to
termine how important the alignment property is from t
very beginning, we analyze first a model, which we descr
in the next section, and then perform a series of numer
simulations that cover a wide range of situations.

V. SIMPLIFIED MODEL: IS THE ALIGNMENT
NECESSARY FROM THE VERY BEGINNING?

In order to analyze whether the alignment is necess
from the very beginning, we introduce here a model t
applies in certain cases. Let us first define the follow
quantities:

b̂k5
r ~ t !

z k̄~ t !
1 (

l 51

N

a l ln@12z l ~ t !z k̄~ t !#. ~38!
of
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Using the fact that(k51
N ak50, it is possible to show that the

quantitiesb̂k are related to the constants of motion,bk , de-
fined in Eq.~13!, by

b̂k5bk2 (
l 51

N

a l ln~z l !. ~39!

Let us assume now that the norms of the poles are initi
very small @ uzk(r 0)u!1 for all k#. In such a case we ca
approximate the quantitiesb̂k by

b̂k'
r

zk~r !
, ~40!

while ua l zk(r )z l (r )u!r /uzk(r )u for all l and k and
ur /r 021u!1. If we replace Eq.~39! in Eq. ~40! and differen-
tiate the resulting equation with respect tor we observe that,
for uzku small enough, the variation of( l 51

N a l ln(zl ) with r
is much smaller~in norm! than that ofr /zk(r ). This in turn
implies thatdlnzl /dr51/r for all l . Therefore, in this ap-
proximation, d/dr@( l 51

N a l ln(zl )#50, implying that the

quantitiesb̂k can be treated as constants.
Let us consider now the pole with the largest norm and

us assume that it remains the one with the largest norm
ing the whole evolution. Without loss of generality we ca
say it is the one withk51. Given that alllk’s are different,
neglecting all terms withl Þ1 in Eq. ~38!, we get the fol-
lowing approximate relations:

b̂1e2 il1'
rei @g1~r !2l1#

uz1~r !u
1ua1u ln@12uz1~r !u2#, ~41!

which reduces to Eq.~40! if uz1u is small enough, and

t'
r 22r 0

2

2
1

ua1u2

2
ln@12uz1~r !u2#. ~42!

Given that, at least initially,uz1u'r /ub̂1u @see Eq.~40!#, we
conclude from Eq.~42! that ub̂1 /a1u.1 for time t to in-
crease monotonically withr . Therefore we assume tha
ub̂1 /a1u.1. We also assume that the approximate relatio
~40! are still valid for allkÞ1. From Eq.~40! it immediately
follows that allb̂k with kÞ1 can be treated as constants. O
the other hand, since the departure from the approxim
relation ~40! for k51 occurs whenr becomes sufficiently
large so thatuz1u is close to one, we can show thatb̂1 can
also be treated as a constant. In fact, in all the simulations
show in this paper the variousb̂k’s remain practically con-
stant. Moreover, if we integrate the equations for the po
assuming that either theb̂k’s or thebk’s are constant, we ge
evolutions which are almost indistinguishable. Notice th
that Eq.~41! not only reduces to Eq.~40! if uz1u is small, but
it also ‘‘contains’’ the asymptotic behavior described by Eq
~19! and ~20! as r→`.

Assuming the approximation is good, we get fro
Eq. ~41!
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r 2

ua1u2
5uz1~r !u2F S a1 ln

1

12uz1~r !u2D 2

1b2G , ~43!

wherea5Re(b̂1 /a1) andb5Im(b̂1/a1). Inserting Eq.~43!
in Eq. ~42! we obtain

t[
2t1r 0

ua1u2
5xF S a1 ln

1

12xD 2

1b2G2 ln
1

12x
, ~44!

where x5uz1(r )u2. As mentioned before, ifub̂1 /a1u.1,
bothx andt are, initially, increasing functions ofr . Thus, at
the initial stages,t is an increasing funcion ofx. If this
continues to be so for all 0<x,1, then the behavior is
smooth, i.e., there are no finite-time singularities. Note t
this monotonic behavior oft(x) guarantees, through Eq
~42!, that r is also an increasing function ofx. This corre-
sponds to the actual behavior of the physical system: the
covered by the ‘‘bubble’’ grows with time. On the othe
hand, if dt/dx50 at some value ofx, 0,x,1, then time
would need to flow backwards at that point in order to rea
the asymptotic behavior asx→1. This is clearly unphysica
and corresponds to the formation of a cusp in the interfac
that finite time.

The criterion for the monotonicity oft(x) can be found
very simply. We want to know if there is anx0P@0,1) such
that t8(x0)[dt/dx(x0)50. The functiont8(x) reads

t8~x!5S a1 ln
1

12xD 2

1b212
x

12xS a1 ln
1

12xD2
1

12x
,

~45!

and can be rewritten as

t85~a21b2!12a~y1ey21!1y212y~ey21!2ey,
~46!

with y[2 ln(12x), so y>0. Because of the smallness
uz1~r 0)u, we obtain from Eq.~41! that a'ub̂1 /a1ucos@g1(r0)
2l1#. Therefore the sign ofa is related to the initial align-
ment between the polez1 and a1. In this waya.0 means
that ug1(r 0)2l1u,p/2 and vice versa.

Let us defineh(y)[y212y(ey21)2ey and g(y)[(y
1ey21). It is clear thatg(y)>0, for y>0. On the other
hand,h(y)>hmin'21.094, for y>0. Using the equations
a21b25ub̂1 /a1u2 and a5ub̂1 /a1ucos@g1(r0)2l1#, we ob-
tain from Eq.~46! that a finite-time singularity occurs if ther
is a y>0 such thatt8(y)50. We then conclude that, i
ub̂1 /a1u2.1.1 and ug1(r 0)2l1u,p/2, there are no finite-
time singularities. Notice that, ifuz1u!r 0, while r 0>ua1u,
then ub̂1 /a1u@1, so that the conditionub̂1 /a1u2.1.1 is au-
tomatically satisfied.

We analyze now what happens whena,0. Let us assume
again thata21b25ub̂1 /a1u2.2hmin . Using the equations
a21b25ub̂1 /a1u2 and a5ub̂1 /a1ucos@g1(r0)2l1#, we ob-
tain from Eq.~46! that a finite-time singularity will occur if
there is ay>2 ln2 such that

cos@g1~r 0!2l1#5k~y![2
ub̂1 /a1u21h~y!

2g~y!ub̂1 /a1u
. ~47!
t

ea

h

at

Note that if, as mentioned before,ub̂1 /a1u@1, then the con-
dition that ub̂1 /a1u21h(y).0 is automatically satisfied
Therefore k(y),0, for y.0. So, finite-time singularities
never occur if cos@g1(r0)2l1#.0, which corresponds to the
case in which the singularity anda1 are somehow
‘‘aligned.’’ On the other hand,k(y) has only one maximum
k* , such that

k* [k~ymax!52
2ln~ ub̂1 /a1u!1O~1!

ub̂1 /a1u
. ~48!

Taking this into account the criterion for a cusp formation

Re~ ub̂1 /a1u!12ln~ ub̂1 /a1u!,0. ~49!

This means thatug1(r 0)2l1u has to be bounded away from
p/2 for cusps to occur. This is somehow intuitive: in th
asymptotic regimeg1(r )2l1→0; thus this asymptotic be
havior will never be reached ifug1(r 0)2l1u is too far away
from zero. On the other hand, forub̂1 /a1u big enough,k*
increases withub̂1 /a1u @see Eq. ~49!#. Thus the bigger
ub̂1 /a1u is, the closer top/2 the differenceug1(r 0)2l1u
needs to be to avoid the singularity. This is also intuitiv
since ua1u is the characteristic time with whichuz1u ap-
proaches the value 1 asr→` @see Eq.~19!#. If this time is
too short andug1(r 0)2l1u.p/2, there is no time left for the
angle g1 to approach the asymptotic valuel1, and the
asymptotic behavior cannot be reached.

In summary, we have obtained that, for cases w
ub̂1 /a1u.2hmin'1.094, an initial condition will be free of
finite-time singularities if and only if

ug1~r 0!2l1u<p/2, ~50!

or

p/2,ug1~r 0!2l1u,arccos@ ln~ ub̂1 /a1u!/~ ub̂1 /a1u!#.
~51!

This means that the misalignment betweenz1(r 0) and a1
cannot be bigger than an upper bound, which is very clos
p/2 if ub̂1 /a1u@1. We must remember that these conditio
have been obtained within the framework of our simplifi
model, so that they will hold provided that the model is
good approximation of the problem.

VI. NUMERICAL SIMULATIONS

In this section we present a set of numerical simulatio
with which we try to analyze what type of initial condition
can reach the nonsymmetric asymptotic regime described
Eqs. ~19!–~22! in a more general setting. In particular, w
wanted to check to what extent the conditions derived in
preceding section could be applied to more general ca
For this purpose, we integrated numerically the evolut
equations of the poles for various nonsymmetric initial co
ditions. We show various snapshots of the physical interfa
in Fig. 3.

Figure 3~a! corresponds to a nonsymmetric case with fi
poles and initial arguments that satisfy cos@gl (r 0)2l l #.0
for all 1<l <5. Thus, taking into account the previous di
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cussion, we expect this initial condition to lead to smoo
interfaces for all times. In fact, this is what we observe in th
numerical simulation, as shown in Fig. 3~a!, where we see
smooth nonsymmetric interfaces. In this case the asympt
behavior is well described by Eqs.~19!–~22!, as also illus-
trated by Fig. 4~a!, where we observe how three of the argu
ments approach the correspondingl l ’s ~indicated with
dashed lines! while uzu→1.

Figure 3~b! also corresponds to a situation with five pole
but in this case the argument of one of them,z4, satisfies
cos(g42l4),0. The parameters are such that the conditi
~51! is satisfied @cos(g42l4).20.1 and h(ymax),20.2#.
Also in this case we observe that the interface rema
smooth for all times. Now, this is an example in which th
asymptotic behavior is not described by Eqs.~19!–~22!,
since the arguments of two of the poles,z3 andz4, approach
the same value, as shown in Fig. 4~b!. The merging of the
two arguments results in the merging of the two correspon
ing gaps, as we can see in Fig. 3~b!. It is relatively easy to
understand why this happens in terms of the initial conditio
In this casel3.l4 while g3(r 0),g4(r 0). If we assume that

FIG. 3. Physical interfaces at different times for various sol
tions of the form~10! with different values ofN and initial condi-
tions. ~a! N55, ua1u50.4, ua2u50.6, ua3u50.5, ua4u50.7,
l1522.5, l2521.5, l3521, l451.3, a552( l 51

4 a l ;
uz l (r 0)u50.1, for 1<l <5, g1(r 0)5l110.1, g2(r 0)5l220.1,
g3(r 0)5l310.2, g4(r 0)5l410.05, g5(r 0)5l510.05, and r 0

51. In this case allb̂k’s satisfy Re@b̂k(r 0)exp2ilk#.0 and we
obtain an asymmetric solution that remains smooth for all times.~b!
N55, ua1u50.4, ua2u50.6, ua3u50.4, ua4u50.6, l1522.5, l25

21, l351.3, l450, a552( l 51
4 a l ; uz4(r 0)u50.05 and

uz l (r 0)u50.1, for all l Þ4, g1(r 0)5l1, g2(r 0)5l2, g3(r 0)5l3,
g4(r 0)5l411.6708, g5(r 0)5l5, and r 051. ~c! N55 with all
a l ’s and uz l (r 0)u ’s as in Fig. 2 but withg l (r 0)5l l 11.6708 for
all 1<l <5. ~d! N55, ua1u50.4, ua2u50.6, ua3u50.4, ua4u50.5,
l1522.5, l2521, l351.3, l450, a552( l 51

4 a l ; uz4(r 0)u
50.05 anduz l (r 0)u50.1, for all l Þ4, g1(r 0)5l1, g2(r 0)5l2,
g3(r 0)5l3, g4(r 0)5l411.8708,g5(r 0)5l5, andr 051.
e

tic

-

,

n

s

-

.

the asymptotic behavior is described by Eqs.~19!–~22! and
that the gaps are aligned as described by Eqs.~31!–~33! we
come to the conclusion that the gaps corresponding to th
two poles will cross each other. This cannot happen. Inst
of this, the two gaps merge and the two arguments appro
the same value which is neitherl3 nor l4, as may be ob-
served in Fig. 4~b!.

In order to study the validity of the condition~51! with-
out having merging arguments, we tried an initial conditio
with N55 poles for whichl1,l2,l3,l4,l5, g1(r 0)
,g2(r 0),g3(r 0),g4(r 0),g5(r 0), and cos@gl (r 0)2l l ]
,0 for all 1<l <5. The results are shown in Fig. 3~c!. In
this case the condition~51! is satisfied for all the poles
„cos@gl (r 0)2l l #'20.1 andh(ymax)'20.247… and we ob-
serve smooth interfaces for all times.

We show in Fig. 3~d! an example in which a cusp deve
ops. The initial condition is similar to that of Fig. 3~b!, but in
this casez4 does not satisfy the condition~51! @cos(g42l4)
'20.296 andh(ymax)'20.178#. Therefore the evolution
agrees with what we expect from this condition.

In summary, the examples we show in Fig. 3 are such t
the interfaces remain smooth if the poles either sati
cos(gl 2l l ).0 or cos(gl 2l l ),0 and condition ~51!.
On the other hand, if there is at least one pole such t
cos(gl 2l l ),0 and condition~51! is not satisfied, then the
interface develops a cusp. Furthermore, we have obse
the same type of behavior for all the initial conditions w
tried, regardless of the number of poles. This suggests
the conditions found in the preceding section might app
even if the model is not a very good approximation.

VII. CONCLUSIONS

We have studied the process of two-dimensional Lapl
ian growth in the limit of zero-surface tension for cases w
a closed interface surrounding a growing bubble. We ha
used the time-dependent conformal map technique to ob
a class of fingerlike solutions. These solutions are similar
those previously found in a different geometry~infinite or
periodic, but not closed, interface! @14,15#. They are charac-
terized by a finite number of poles and they are a nonsy
metric generalization of the solutions presented in Ref.@10#,

-

FIG. 4. ~a! Plots of g1, g2, and g3 as functions ofr for the
example of Fig. 3~a!. The values ofl1, l2 andl3 are indicated with
dashed lines. In this case we observe that, for alll , g l →l l as r
→`. ~b! Plots of g3 and g4 as functions ofr for the example of
Fig. 3 ~b!. In this caseg3 andg4 approach the same value, asym
totically in time, which is neitherl3 ~indicated with a dashed line!
nor l4 ~which is equal to zero! but a value in between.
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which were limited to specific symmetries.
The study of Laplacian growth is relevant for a variety

physical processes observed both in laboratory experim
and in natural systems, a particular example of which is v
cous fingering. Now, the assumption of zero-surface tens
is a major limitation of the model. In fact, most solution
studied in the past~see, e.g.,@12#! were observed to develo
finite-time singularities. As a rule, such singularities wou
not appear in the presence of surface tension, since its m
effect is to prevent the development of small length-sc
instabilities. Therefore, in those cases, the zero-surface
sion solution is meaningless and does not provide a g
representation of the actual evolution. In this paper we h
studied under which conditions the nonsymmetric fingerl
solution described by Eq.~10! remains smooth for all times
Using a simplified model we have found some sufficient c
ditions that guarantee this behavior and others under w
the interface becomes singular at a finite time. Apparen
these sufficient conditions are also meaningful in cases
which the simplified model assumptions do not hold. In fa
we have observed this in numerical integrations of the so
tion ~10!. We have found that whenever each pole satisfie
sufficient condition for the interface to remain smooth, t
solution does not become singular. On the other hand
there is one pole that satisfies the sufficient condition for
development of cusps, then a cusp indeed occurs. Simi
to what happens in the infinite line or channel geome
cases@14#, solutions that remain smooth for all times ca
reproduce various phenomena observed in experiments,
as tip splitting, coarsening, and screening@3#. Therefore they
provide a good model of the observed evolution.

One of the interesting properties of these solutions is
fact that they are described in terms of a finite number
time-dependent variables~the poleszk , 1<k<N). There-
fore the evolution is determined by a finite set of ordina
differential equations~ODE’s! instead of the original partia
differential equation~PDE! ~8!. The description of infinite-
dimensional dynamical systems in terms of finite numbers
degrees of freedom is currently a field of active research.
numerous papers on the theory of inertial manifolds or
technique of proper orthogonal decomposition, among o
ers, are a reflection of this~see, e.g.,@27#!. The widespread
interest in the subject is driven by the possibility of applyi
well-known results of low-dimensional dynamical systems
Y.
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infinite-dimensional ones. The existence of a particular cl
of solutions that allows the reduction of the system, wh
keeping the main properties of its evolution, provides
unique opportunity of achieving this goal in the present ca
Moreover, as in the infinite line and channel geometry ca
@14#, the reduced system of equations is completely in
grable, providing an easy description of the evolution. In t
regard, theN-finger solution~10! is similar to theN-soliton
solutions of integrable nonlinear partial differential equ
tions.

As in the infinite line and channel geometry cases@14#,
any smooth initial interface can be approximated, to any
gree of accuracy, by an expression of the form~10!. Thus,
the class of solutions described by Eq.~10! is, in some sense
a nonlinear basis into which any solution of the LGE cou
be spanned. Now, the choice ofN and the variousak’s and
zk(0)’s is notunique. We expect that a model with nonzer
surface tension should overcome this selection problem. T
does not imply that our zero-surface tension solutions
useless. Consider, for example, the case of slightly pertur
integrable nonlinear PDE’s: the soliton solutions of the in
grable equations can be used to reduce the analysis o
perturbed ones to a set of ODE’s. In some sense, the so
solutions still form a ‘‘good nonlinear basis’’ to study th
nonintegrable evolution. We expect a similar situation
hold in our case. Furthermore, the effects of noise on
process of flame propagation have recently been studie
terms of the dynamics of a finite number of poles@28#. This
was possible because the model equations had a parti
solution that could be written in terms of a finite number
poles. We think a similar analysis could also be done in
case. For these reasons we believe that the solutions we
found are meaningful even when surface tension is includ
Thus determining when they remain smooth for all times
relevant in this more general setting.
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