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We study the process of two-dimensional Laplacian growth in the limit of zero-surface tension for cases
with a closed interface around a growing bubl@eterior problem with circular geometyryUsing the time-
dependent conformal map technique we obtain a class of fingerlike solutions that are characterized by a finite
number of poles. We find the conditions under which these solutions remain smooth for all times. These
solutions allow the description of the system in terms of a finite number of degrees of freedom, at least in the
limit of zero-surface tension. We believe that, whenever they remain smooth, they can also be used as a
nonlinear basis even when surface tension is incluf@t063-651X98)03102-X]

PACS numbds): 68.10—m, 47.15.Hg, 47.20.Hw, 68.70w

I. INTRODUCTION The physical meaning of the scalar field involved in the
description differs from system to system. For example, it is
The problem of pattern formation is one of the most rap-a temperature in the Stefan problem, a concentration in the
idly developing branches of nonlinear science todsge, case of solidification, an electrostatic potential in elec-
e.g.,[1]). In particular, the study of the dynamics of fronts trodeposition, a pressure in viscous fingering in Hele-Shaw
between two phasdg@nterfaces has motivated a large body cells, etc. In real systems surface tension is usually present
of work in the ared2]. This type of processes occur in a and it prevents the interface from developing features at very
variety of nonequilibrium systems, including physicals- small length scales. Furthermore, surface tension is fre-
cous fingerind 3], electrodepositioh4], crystal growth[5],  quently the factor that determines the asymptotic evolution
etc), chemical(reactions in continuously fed open reactorsof the system. In fact, experiments in Hele-Shaw cells
[6], etc), and biological oneggrowth of bacterial colonies showed that the system evolved towards a particular solu-
[7], etc). In many cases the motion of the interface is muchtion, although, in theory, there was a continuous set of pos-
slower than the processes that take place in the bulk of thsible long-term behavior§8]. This selection problem re-
phasegsuch as heat transfer, diffusion, ¢tdn those cases, mained unsolved for a long time until it was shown that
the scalar field governing the evolution of the interface is asurface tension could provide the necessary selection mecha-
harmonic function and, therefore, it is reasonable to call thenism[9]. On the other hand, although some solutions in the
whole procesd aplacian growth Furthermore, when a two- limit of zero-surface tension were obtained and studied
dimensional description is possiblas, for example, when [10,11] most of them developed finite-time singularities via
the relevant quantities can be averaged along one dirgctiothe formation of cusp$12,13 (unless they involved some
we talk about two-dimensiondRD) Laplacian growth. In  kind of symmetry that prevented this from happening as in
this paper we will be concerned with processes that allow10]). For this reasonthe study with no surface tension was
this decription. somehow left aside because it was considered a singular and
unrealistic limit
In spite of this, in previous workl4,15 we showed that
*Electronic address: silvina@df.uba.ar there is a whole class of solutions with zero-surface tension
TElectronic address: mariner@lanl.gov that remain smooth for all times. Furthermore, the solutions
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are very general in the sense that no symmetries are akarities. In Sec. IV we analyze which initial conditions can
sumed. They reproduce many of the features that are olapproach the smooth asymptotic behaviors of Sec. Ill. In
served in experiments, such as tip splitting, sidebranchingSec. V we introduce a model in order to analyze whether the
screening, and coarsening, some of which were usually agonditions we find in the asymptotic limit for the solution to
tributed to the effect of surface tensif®]. As we mention in  be well behaved need to be satisfied before the asymptotic
[14,15, the smoothness of the solutions does not imply theifegime is reached. In Sec. V we describe a set of numerical
stability. In fact, how some zero-surface tension solutions aréimulations to analyze this in more general cases. Finally, we
altered when they are considered as the initial condition tgummarize the results in Sec. VI.

the equations with nonzero-surface tension has been exten-

sively studied in[16]. In any case, we must mention that a Il. THE MATHEMATICAL SETTING

widgr cl_ass of zero-surface ten_sion solutions has bgen found \we consider a system in two spatial dimensiofs,
(which |n.clud.es_the ones studied ﬁmfl,lﬂ as a particular =(X,Y), composed of two different phases separated by a
case, which is indeed an attractor in the_case of channelgeq moving interfacel (t). Let us call | the region en-
geometry[17]. Most amazingly, this attracting zero-surface ¢|,qed byl and I the region outside. Both regions are sim-
tension solution reproduces the experimental observation (Hly connected. There is a scalar fieR{X,Y), that describes

a single finger whose width is half the width of the channel.i,o siate of each phase, for example, pressure. We assume

This remarkable and unexpected result implies that zerog, ¢ yhis field satisfies the Laplace equation in region II, sub-
surface tension solutions are more relevant for realistic SitUract to the boundary conditions of it being constantiband
ations than has usually been thought of. Under certain a

” d th h £ th ; hat P~ —In(|R|) as|R|—«. This last condition is suitable
tsump |ons,| \{\_/e prfoveth € Smoo hr']ehsiho . tefzero_—sur 39%r a case in which region | corresponds to a growing bubble
ension solutions for the case in which the intertace IS opery,y the guantities have been rescaled so that the extraction
and infinite and in the case athannel geometryin this

. ) - S rate at infinity is equal te- 27 [10]. In this way the dynami-
paper we investigate whether a similar situation holds when&al problem is described by the following equations:

the interface is closed. Closed interfaces are relevant in many

experimental situations, such as viscous fingering in radial V2Pp=0, Rell, (1)
Hele-Shaw cells[18], isotropic solidification, slow elec-
trodeposition, etc. We expect our study to be relevant for P~—In(|R]), |R|—ce, 2
these cases.

We study in this paper the class of fingerlike solutions of Plr=0, (©)]
2D Laplacian growth in the case of circular geometry. The
solutions are similar to those introduced[ 0], but with no vnlry=—(VP)n, 4

symmetries. They are described in terms of a finite number ) ) ) )

of time-dependent variabledogarithmic poles Therefore wherev is the interface velocity and_ the subscrrptrepre-
they provide a description of the evolution with a finite num- S€nts the component normal to the interface. This set has to
ber of degrees of freedom. It is worth mentioning that solu-_be supplemented with initial conditions for the form of the
tions with logarithmic singularities appear to be generic bottinterface. . o

for the radial and for the rectangular channel geomggd}. In order to look for a solution of Eq$1)—(4) we identify

This does not appear to be the case for the “wed¢gsttoy the physical space WI'Fh the complex pla_ne and use the con-
geometry, where fractional type of singularities might be in-formal mappmg.techmqge.. Thus, we define the complex co-
volved [25]. We study under which conditions the logarith- Ordinate Z=X-+iY=Re?, in the physical plang and the

mic pole solutions remain smooth for all times and we findComplex pressur@/(Z)=P(X,Y) +iW¥(X,Y), wherei is the
sufficient conditions for this to happen. As in the case ofimaginary unit and¥(X,Y) is a real function harmonically
channel geometrj14], these solutions reproduce various conjugated toP(X,Y). Then, we introduce anathematical
phenomena observed in experimef8§ As in nearly inte- ~ Plang which we also identify with the complex planes=x
grable systems, in which the soliton solutions of the inte-+iy=re'?, and define a time-dependent conformal map
grable limit[19] serve to describe the evolution of the non- f, Z=f(zt), from the region outside the unit circle in the
integrable case with a finite number of degrees of freedoninathematical plane|(|>1), to region Il of the physical
[20], we expect these fingerlike solutions to serve as a “nonplane. In this way, the moving interfateis the image of the
linear basis” even when surface tension is taken into acborder of the unit circle under the conformal map. In these
count. As in the soliton case, this decomposition in terms ofiew coordinates Eqg¢1)—(4) reduce to(see, €.9.[10,15)

a finite number of degrees of freedom should be good re- W

gardless of whether each individual solution in the “basis” —=0, |7>1 (5)
is stable or not. Thus the relevance of whether they remain daz
smooth or not goes beyond the limiting case of zero-surface
tension. dw 1

The organization of the paper is as follows. In Sec. Il we dz  z as z—x, (6)
introduce the equations with which we model the problem of
interest. We show in this section how to obtain the Laplacian ReW=0 at |z|=1, (7)

growth equation and present the class of exact solutions that
we are going to analyze in the paper. In Sec. Ill we analyzend the Laplacian growth equatidior LGE [14,15) for
the class of asymptotic behaviors that remain free of singuf(z,t):
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=1 at]r|=1. (8)

. of of
‘9z ot

This equation was originally derived in 19431] and has

several remarkable properties. It has an infinite number ofm
constants of motioh22] (see also extensions to multidimen-

sional and multiconnected systefiz8]), and it is integrable
[24].

Because the map must be conformal outside the unit

circle, it is necessary that all zeros and singularitiegfébz

be located inside the unit circle. On the other hand, very fa
away from the interface all quantities will have the same

form in both systems of coordinatesandZ. Therefore we
also require that(z,t)~r(t)z for |r|—co, wherer(t) is the
size of the growing domaiiqunless the domain is fracjal

has the form

of(zt)  T)_4[z=2,(1)]
iz "Wz ®

with r, ¢, andz, functions of timet, and|,|<1, |z,|<1
for all times and &/<N. In fact, Eq.(8) has solutions that
satisfy Eq.(9) which can be written as

N N
f(zt)=r(t)z— 21 a/<t>lnz/<t>+/§l a, (t)In[z— (V)]
(10)

where

N
> a,=0, (11)
/=1

for f to be single valued, and the equations th@) and the
various { /(t) satisfy can be obtained inserting Ed.0) in
Eq. (8). In particular, the functiom(t) is determined by the
areaA enclosed by the curvi in the physical plane. In fact,
using the conformal map and E@) it can be easily shown
that the area satisfieh4/dt=27. Using then the relation

A=(12)$; -1 f (9f/9z)dz and definingry=r(0), we get

N

2 2 —
r r o,
0 7/ ¢k
= + |n<

1- () &)
5 ./;:1 5 ) (12)

1-£,(0)¢(0)

If we substitute Eq(10) in Eq. (8) we find that alla,'s are
time independent and that the dynamics of the pdles/
=1N is governed byN complex constants of motiog,
which are given by

N

r(t)

:%—’—/:1 (13)

By

a/ln( ;— - 1)
LAY

(also se¢15]). Using these constants we can rewrite &)
as
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In summary, the solutiofl0) is uniquely determined by
the constantsy, and the functiong (t) and {,(t), 1</
<N. Hence, the zeros aff/dz, z,, 1</<N are also de-
termined by these quantities and are, therefore, functions of
e.

Now, this construction allows us to obtain a solution of
the original problem while the poles and zeros96{z,t)/ 9z
remain inside the unit circle. Since they evolve in time it is
not clear that, even if they are inside the unit circlé-a0,
they will remain inside for all times. The aim of this paper is
jo obtain conditions that guarantee that this happens for all
times. This is similar to what we have done for channel
geometry[14,15. Actually, in this case, we will usually con-
siderr as the independent variable and wiig¢r) andz,(r).

It is clear that differentiating Eq.13) by r we immediately

\%btain evolution equations for the polggr) as functions of

r. Givenr and{,(r), 1=<k=N, we obtaint(r) through Eq.
(12) or (14). This way of constructing the solution will work
while t is an increasing function af. Actually it is possible

to show that, if there is a value af (r=ry) at which
dt/dr=0, then there is at least a zezp or a pole{, such
that|z(ro)|=1 or £,(ro)=1. Thus the invertibility oft(r)

is a necessary condition for the zeros to be inside the unit
circle. In order to determine the conditions under which the
solution remains valid for all times, we analyze first the
asymptotic behavioréast— ) that are compatible with the
zeros and poles remaining inside the unit circle. We then
study the subclass of initial conditions which can provide
these asymptotic behaviors.

Ill. POSSIBLE ASYMPTOTIC BEHAVIORS

We now look for the possible asymptotic behaviors that
are compatible with two constraints of the problem: the con-
stants of motion defined in Eql3) and the condition
|, (t)|<1 for all times and/’s. Since the quantity2(t) is
mainly determined by the total area enclosedlhywe ex-
pect it to be an increasing function of time. Therefore we
look for asymptotic behaviors for which(t)—o ast—oo.

Let us write the constants, as

a,=la)er, 1</<N (15)
and the location of the poles, as
{AD=[¢ 0], 1=/<N. (16)

We see that an asymptotic behavior that allows the conser-
vation of the quantities in Eq13) is

r—oo, 17

| |—1, 1s/<N. (18

In this way the divergence of the term proportionalrtdn

the constants3, can be canceled out by another divergent
term, a,In(1/¢,|?—1). In particularjf all X /’s are different
we obtain, under certain conditions that we will discuss later
and which guarantee that all,’'s approach different values
asr—x, the following relations:
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g Mla

o,
¢]~1- e 19

€/
7’/*?\/+T as t—o, (20)

for 1=</<N. In Egs.(19) and(20) 6, and e, are real con-
stants that can be obtained from the conserved quangiies
in the limit of r —oc, when all|,|— 1 and ally,’s approach
different values. They are

In5/=RE{&—E ﬂln(ew‘””—l)}, (29

Ay k#+/ Ay

B,e M= |ale M MIn(elh M —1) |,

=
(22)

€,=Im

We have to look now at how the zeros &f/ 9z, z,(t),
evolve wherr (t) and the poles behave as in E¢k7)—(20).

SILVINA PONCE DAWSON AND MARK MINEEV-WEINSTEIN

O(1/r)
zero@/(/>§ole
o@m ¥

FIG. 1. Schematic picture of how poles and zeros can be dis-
tributed in the mathematical plane in the asymptotic limit described
by Egs.(19)—(22). The solid line indicategpart of the border of
the unit circle. The cross indicates the location of a pglend the
small circle that of a zer@, for r big enough. The difference
between both i€, —z;= a4 /r, which is also shown in the figure as
the arrow of length o©(1/r). The distance frong, to the border is

In particular, we do not know if it is necessary to imposeO(e™ lealiry Given that the arguments ¢f anda, are almost equal
some other restrictions on the asymptotic behavior for théthey differ by a quantity ofO(1/r) as indicated in the figullez,
zeros to remain inside the unit circle. In order to analyze thislies inside the unit circle and further away from the border thgn

let us defineP(z)= szl(z z,). Using Egs(9) and(10) we
can write

N N
P@=rIl z-¢)+2 all z-¢). (3
/=1 k=1 7/ #K
It is possible to show tha®(z) is the characteristic polyno-
mial of the matrixA defined by

ay
Akagkakj_T1

(24)
where &; is the Kronecker symbol. Thus the zerng of
P(z) are the eigenvalues of the square ma&ixAccording
to Gerschgorin's theorelfsee, e.g.[26]) the eigenvalues of
anN XN square matribA lie in the union of theN disksI',
defined byFk:|z—Akk|sEJ!\'=lyj,ék|Akj|. Therefore applying
Gerschgorin’s theorem to our matr& we find that its ei-
genvalues, or equivalently, the zemsof df/dz satisfy

N

> e ],(N=1)|ay
STk

o 1
—§k+T Slen

forall 1<k=N. (25
Thus, using Eqs(17)—(20) we find that
z,— ek as r—oo. (26)

Furthermore, we get from E@23) the following relation:

ag =2 {r—2,
T_(gk_zk)/l;[k (Zk—i/) (i Zk)H 1 Lk~ é’/)’
27

provided that all,’s are different. This holds, in particular,
when the asymptotic behavior is described by E9) and
(20) and all the arguments, , are different. We see from

its distance bein@(—|a4|/r).

Eq. (27) that its right hand side goes to zero s . We

then conclude that{—z,)—0 asr—o. Moreover, assum-
ing that o /r is small enough for eack we get from Eq.
(27) the relation

g

lal

aka/ (

5/)
Combining Eqs(28) and(19) and(20) we obtain

r

3
) . (28

1
Tt

2= r</zk (

zkme“k(l— as r—o, (29

Thus|z|?~1-2|a,|/r<1 for r big enough.

Hence, we find that, for big enough, it is possible to
have a solution of the forr(iLl0) such that all zeros and poles
of df/9z lie inside the unit circle. Such a solution has the
property that the argument of each pdleand each zera,
differ from the argument of the corresponding constapby
a very small amount, which is of the order of With r big.

The fact that cosg,— M\ )>0 for r big guarantees, on one
hand, that the sum of the two divergent terms in the con-
stantsp, goes to a finite limit as—oc. On the other hand, it
guarantees that the zeros remain “behind” the poles and
cannot reach the unit circle at a finite valueroWe show a
schematic picture of this behavior in Fig. 1. In the next two
sections we analyze whether the alignment of the singulari-
ties and thex's (i.e., A\ = vy for all k) needs to be satisfied
also for small values aof, in order for an initial condition to

be able to reach the smooth asymptotics just described.

This asymptotic regime shares some properties with the
one we found in the channel and in the infinite line geom-
etries[14,15, i.e., a case in which the interface is not closed.
In that case we used a conformal map that mapped the real
axis of the mathematical plane onto the physical interface,
but still it is possible to make some connections with the case
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two gaps. We illustrate this in Fig(& where we have plot-
ted the physical interface for a solution of the fo(h®) with
N=5, that remains smooth for all times. There we indicate
the location of the stagnation points with crosses. We have
also drawn a straight line of lengtha; along the vectora;
inside the corresponding “gap” of the interface. We observe
a total of five gaps and five fingers, i.e., as many as poles.
In the case of channel geometry we also found solutions
such that two gaps corresponding to two different poles
merged into one gap. We related this to the effect of shield-
ing observed in experiments of viscous fingering, since the
o _ _ _ finger between the two gaps of the analytical solution
FIG. 2. (3 Rhysncal |nterfa:\lce at d_lfferent tlmgs for a solution of stopped growing after some time. In fact, we can also find
the form (10) with N=>5, {ady_, as in Eq.(35) with A=04, and 45 tyne” of solutions in the present case. However, the
{.gk(r"?}'gl as in Eq.(36) with .|§'f(ijf?)|=%l ?';dffl,- IheAloca'_ @Symptotic behavior is not described by E¢9)—(22). In
tion of the stagnatlon pomts IS Indicated with asterisks. stralg :
line of lengthwa; along the vectoia, has been drawn inside the EEESC;SE :]vxomgl;%uan:r;;&_rl;ﬁg ﬁﬁ?nnggtﬁsar?gitmxa%%?; ch
corresponding "gap” of the interfaceb) Similar to (a) but here but lies in between the tWo In this case, there alre morzé than
v(ro) =Ny (ro)+  for all 1<k=<5. In this case the solution devel- X . . ) !
ops cusps at a finite time. two diverging terms B, and,B?, asr—o0, and one needs to _
take all of them into account in order to deduce asymptotic
we are analyzing now. In particular, it is possible to show in€XPressions for the polel§ and¢,. The asymptotic value of
the present case that, Bss, the interface develops “stag- 71 @nd vz is arg@,+ 7). Two initially separated gaps de-
nation points,” i.e., points that stay almost fixed during theScribed by{ay, 81} and{a,,B} will eventually merge if
evolution. Let us remember that the physical interface is

given by the curvef(z=€'¢) with —7<¢=<. Using the €og6,)>Cog 65),
formulas that describe the asymptotic regime, Ed€)— _ _
(22), and Eq.(13) we find sin(#;)sin(6,)=0, (39
i |a| Wheret91 22)\12—arg(,81/,82).
f(z=¢ yk):Bk_ak|n2+o(T , (30 It should also be possible to find smooth asymptotic be-

haviors in cases for which some argumemntg, are equal.
where care should be taken in order to choose the argumegwe are not going to analyze these cases in the present paper.
of the logarithms. In any case, this shows that there are ashus we will assume from now on that+ A for all k#j.
many stagnation points as poles and that their location is
determined by the constants of motion of the problem. On
the other hand, if we consider a range of angdes a small
neighborhood ofy, we find

IV. ABOUT INITIAL CONDITIONS
LEADING TO NONSINGULAR
ASYMPTOTIC BEHAVIORS
i : -
f(e'%)=B— ayln2+i akarcta+—w

+0
1-2

M) Now that we have obtained a set of smooth asymptotic
' behaviors, which are defined by E¢$7)—(20), we look for
(31D  sets of initial conditions with finite values ofthat can reach
such asymptotics. A “good” initial condition must be such
that|£,(0)|<1 and|z(0)|<1 for all 1<k=<N. It is easy to
construct such an initial condition. Given the number of sin-
gularities,N, we first choose a set & complex numbersy,
constrained by Eqg(11). We then choose (0) so that
NA/r(0)<1, whereA=max{|aJ}. Then, we choose a set
of real number${,(0)| sufficiently small so that all the balls

Since 1-|¢|—0 asr— o, the argument of the arctan in Eq.
(31) can be very big even ip— v, is very small. In fact, we
can always find\ = 7(1—1¢,|) such thaty>1 butA<1. In
this way we can consider the range of angles
Emin= Yk~ A< @e=<@mn.= v+ A for which Eq.(31) is valid.

On the other hand, since>1, then

Proin— Vi P Vi defined in Eq.(25) are entirely contained in the unit circle.
_arcta+_— =arcta+_— =arcta+_—} We can always do this provided thitA/r(0)<<1. In this
1-¢d 1-1¢d 1-1¢d way we guarantee that all zeros satig#(0)|<1. Now,
- even if we construct such an initial condition we cannot
=arctaf n]~ 5 (32 guarantee that the solution will be well behaved for all times:

either a pole or a zero might cross the unit circle at a finite
time. Almost all known solutions of Eq8) develop finite-
time singularities via the formation of cusps and this has
f(elPmax) — f (e omin) =i 7 ey, . (33 been the subject of a large amount of work during the past
years. Despite these negative results, we were able to obtain,
This implies that the interface has “gaps” around each stagin a different geometry, a class of solutions that remained
nation point of widthm|«, | with an orientation that depends smooth for all timeg[14,15. Although we do not have a
exclusively on eacla, . We call a finger the region between proof in the present case, we have obtained a set of addi-

Thus we obtain from Eq31) the relation
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tional constraints that seem to guarantee the smoothness Obing the fact thaB}_,a,=0, it is possible to show that the

the solution at all times. _ o quantities, are related to the constants of motig,, de-
As we mentioned in the preceding section, in the smoothined in Eq.(13), by

asymptotics each polé, is almost aligned with its corre-

spondinga,.. Thus we ask whether it is necessary that the N
initial condition have this property too, in order to be able to Bi=Br— > a,/n(l)). (39)
reach the good asymptotics. In particular, it has been shown /=1 '

that certain solutions of the foriid0) that have some type of

symmetries do remain smooth for all timg®)]. These sym- Let us assume now that the norms of the poles are initially
metric solutions have the “alignment” property during the very small[|¢(ro)|<1 for all k]. In such a case we can
}/(\;??I:/iiﬁ\éolutlon. A particular subset of this class is the oneypproximate the quantitie8, by

r

2mik B~ =—,
ak=AeT, A real, k=1,...N (35 Li(r)

(40)

while |a & (1)L (r)|<rl|g(r)| for all / and k and
[r/ro—1|<1. If we replace Eq(39) in Eq. (40) and differen-
2k tiate the resulting equation with respectrtave observe that,
16(t=0)|<1, %(t=0)=—, k=1,...N. for || small enough, the variation &_, a,In(¢,) with r
N is much smallefin norm) than that ofr/{,(r). This in turn
(36) implies thatdInZ, /dr=1/r for all /. Therefore, in this ap-
proximation, d/dl’[E'}‘zla/ln({/)]ZO, implying that the
quantities,@k can be treated as constants.
_ 2 mrik/N Let us consider now the pole with the largest norm and let
L(t)=y(t)e , () real, (37 us assume that it remains the one with the largest norm dur-
ing the whole evolution. Without loss of generality we can
for all t=0, so thaty,(t) =\, for all imes. We show in Fig. say it is the one wittkk=1. Given that all\’s are different,
2(a) various snapshots of the physical interface for one sucheglecting all terms with’’#1 in Eq. (38), we get the fol-
symmetric solution withN=5, where we see that it does |owing approximate relations:
remain smooth during the whole evolution. If we take an

and the initial condition is such that

It is possible to show that the poles are of the form

initial condition as the one described by E435) and (36) o rellnag]
but with ,(0)=\+ 7 instead of y,(0)=\,, the argu- Be M~ G +|aqg|in[1-]2,(0)|?], (4D
ments y, also remain constant during the evolution. Thus Gulr

they cannot reach the asymptotic regime described by Egs. ) )
(19)—(22), since the arguments of the poles will never alignWhich reduces to Eq40) if |£1] is small enough, and
with those of thea,’s. Notice that by choosing this initial
condition we interchange the mutual position of zeros and rz—rg |a1|2 )
poles with respect to the previous case. In this way, the zeros ~7 + 2 In[1—[Z4(r)["]. (42)
reach the unit circle at a finite time and the solution develops
hi W ied [13]). We show a plot of th . -

;ﬁiﬁigl isnf:r?:ce?rsl Ii?;.d(g)df([)rsg)ne si(fh 2oll?tigno.t '™ Given that, at least initially}Zs|~r/| 84| [see EQ-(40)]1 we

Now, the discussion of the preceding section shows thagonclude from Eq(42) that[B;/a,|>1 for time t to in-
there can be nonsymmetric solutions that give rise to smootArease monotonically wittr. Therefore we assume that
interfaces, at least in the asymptotic regime. In order to de}8;/a4|>1. We also assume that the approximate relations
termine how important the alignment property is from the(40) are still valid for allk# 1. From Eq.(40) it immediately

very beginning, we analyze first a model, which we describggllows that all 3, with k+ 1 can be treated as constants. On
in the next section, and then perform a series of numericahe other hand, since the departure from the approximate

simulations that cover a wide range of situations. relation (40) for k=1 occurs wherr becomes sufficiently
large so that/,| is close to one, we can show tha can
V. SIMPLIFIED MODEL: IS THE ALIGNMENT also be treated as a constant. In fact, in all the simulations we
NECESSARY FROM THE VERY BEGINNING? show in this paper the varioys,’s remain practically con-

In order to analyze whether the alignment is necessar§tam' Moreover, if we integrate the equations for the poles

from the very beginning, we introduce here a model tha@ssuming that either the’s or the B,’s are constant, we get

quantities: that Eq.(41) not only reduces to Eq40) if |{,| is small, but

it also “contains” the asymptotic behavior described by Egs.

N (19) and(20) asr— o,
Ak:i_t)Jr an[1- g/(t)g_k(t)]. (38) Assuming the approximation is good, we get from
Lt =1 ' Eq. (41)



2 2

_:|§1(r)|2

|C¥1|2

( a+In + bzl . (43

1
1-14(n)?
wherea=Re(B;/a;) andb=Im(B;/a;). Inserting Eq(43)
in Eq. (42) we obtain

2

_ 2t+rg b2

1
T =X - |nm, (44)

| 1
+|ln—
a nl_x

|041|2

where x=|£,(r)|%. As mentioned before, if B;/a;|>1,
bothx and 7 are, initially, increasing functions of. Thus, at
the initial stages,r is an increasing funcion oxk. If this
continues to be so for all €x<1, then the behavior is
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Note that if, as mentioned befod@llall>1, then the con-

dition that |Bl/a1|2+h(y)>0 is automatically satisfied.
Thereforek(y)<0, for y>0. So, finite-time singularities
never occur if cdsy;(rg)—A\1]>0, which corresponds to the
case in which the singularity andr; are somehow

“aligned.” On the other handk(y) has only one maximum,
k*, such that

2In(| By /a1|)+0(1)
|,231/011|

Taking this into account the criterion for a cusp formation is

K*=K(Ymad = — (48)

Re(| 81/ ay|)+2In(| By /a,])<O. (49)

smooth, i.e., there are no finite-time singularities. Note that

this monotonic behavior ofr(x) guarantees, through Eg.
(42), thatr is also an increasing function of This corre-

This means thalty,(r,) —\;| has to be bounded away from
/2 for cusps to occur. This is somehow intuitive: in the

sponds to the actual behavior of the physical system: the aregymptotic regimey,(r)—X;—0; thus this asymptotic be-

covered by the “bubble” grows with time. On the other
hand, ifd7/dx=0 at some value ok, 0<x<1, then time

would need to flow backwards at that point in order to reach

the asymptotic behavior as—1. This is clearly unphysical
and corresponds to the formation of a cusp in the interface
that finite time.

The criterion for the monotonicity of(x) can be found
very simply. We want to know if there is ate[0,1) such
that 7’ (xg) =d7/dx(Xy) = 0. The function7’ (x) reads

2
+b%+2

7' (X)=

| 1 X / | 1 1
atinT— 1—x\a+ "T=x] " 1=x’

and can be rewritten as

7' =(a’+b?+2a(y+e'—1)+y*+2y(e’—1)—¢,
(46)

with y=—In(1—-X), so y=0. Because of the smallness of
|£1(ro)|, we obtain from Eq(41) thata~|B;/a4|cog y(ro)
—\1]. Therefore the sign o is related to the initial align-
ment between the polg, and «;. In this waya>0 means
that|y,(ro) —\1|<w/2 and vice versa.

Let us defineh(y)=y?+2y(e’—1)—e¥ and g(y)=(y
+e¥—1). It is clear thatg(y)=0, for y=0. On the other
hand, h(y)=h,,~—1.094, fory=0. Using the equations
a?+b%=|B1/ay)? and a=|B;1/a;|cogyi(ro)—\i], We ob-
tain from Eq.(46) that a finite-time singularity occurs if there
is ay=0 such thatr'(y)=0. We then conclude that, if
|B1/aq|?>1.1 and|y;(ro) — | < m/2, there are no finite-
time singularities. Notice that, ifZ,|<rq, while ro=|a4|,
then|B,/a;|>1, so that the conditioh3,/a;|?>>1.1 is au-
tomatically satisfied.

We analyze now what happens whee 0. Let us assume

again thata®+b?=|3;/a;|?>> —hy,. Using the equations
a’+b?=|B;/ay)? and a=|B;/a;|cog y(ro)—\.], we ob-
tain from Eq.(46) that a finite-time singularity will occur if
there is ay=—1In2 such that

| B1/ | ®+h(y)

= . (47
29(y)|B1! a4

cog y1(ro) — N ]=k(y)=—

havior will never be reached [fy;(ry) —\4| is too far away
from zero. On the other hand, f¢B;/a4| big enough k*
increases with|3;/a,| [see Eq.(49)]. Thus the bigger

dB1/ 4| is, the closer tom/2 the difference|y;(ro) —\4|

needs to be to avoid the singularity. This is also intuitive,
since |a4| is the characteristic time with whichZ;| ap-
proaches the value 1 as»>» [see Eq.(19)]. If this time is
too short andy;(rq) —\q|> /2, there is no time left for the
angle y, to approach the asymptotic value,, and the
asymptotic behavior cannot be reached.

In summary, we have obtained that, for cases with

|31/ a1|>—hpmin=1.094, an initial condition will be free of
finite-time singularities if and only if

ly1(ro) —Nq|=m7/2, (50

77/2<|71(fo)—Ml<afCCO$|n(|Bl/a1|)/(|ﬁ1/a1|)]-(51

This means that the misalignment betwegifr,) and a;
cannot be bigger than an upper bound, which is very close to

w2 if | B1/a1|>1. We must remember that these conditions
have been obtained within the framework of our simplified
model, so that they will hold provided that the model is a
good approximation of the problem.

VI. NUMERICAL SIMULATIONS

In this section we present a set of numerical simulations
with which we try to analyze what type of initial conditions
can reach the nonsymmetric asymptotic regime described by
Egs. (199—(22) in a more general setting. In particular, we
wanted to check to what extent the conditions derived in the
preceding section could be applied to more general cases.
For this purpose, we integrated numerically the evolution
equations of the poles for various nonsymmetric initial con-
ditions. We show various snapshots of the physical interfaces
in Fig. 3.

Figure 3a) corresponds to a nonsymmetric case with five
poles and initial arguments that satisfy cggry)—A,]1>0
for all 1=</<5. Thus, taking into account the previous dis-
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FIG. 4. (a) Plots of y,, v,, and y; as functions ofr for the
example of Fig. 8). The values of\ ;, A, and\ 5 are indicated with
dashed lines. In this case we observe that, forally,—\ , asr
—oo, (b) Plots of y; and y, as functions ofr for the example of
Fig. 3 (b). In this casey; and y, approach the same value, asymp-
totically in time, which is neitheh ; (indicated with a dashed line
nor A, (which is equal to zenobut a value in between.

the asymptotic behavior is described by E@®)—(22) and
that the gaps are aligned as described by E25—(33) we
come to the conclusion that the gaps corresponding to these

FIG. 3. Physical interfaces at different times for various solu-two poles will cross each other. This cannot happen. Instead

tions of the form(10) with different values ofN and initial condi-
tionS. (a) N:5, |a1|=0.4, |a2|=0.6, |a3|=0.5, |Cl4|:O.7,
N1=—25, Ap=—15, Ns=-1, N=13, as=—32)_ja,;
|£(ro)[=0.1, for 1=/<5, y,(ro)=N1+0.1, y5(rg)=A,—0.1,
v3(ro) =A3+0.2, y4(rg)=N4+0.05, y5(rg)=A5+0.05, andr,
=1. In this case all3,’s satisfy REBy(ro)exp—irJ>0 and we

obtain an asymmetric solution that remains smooth for all tini®s.

N=5, |a|=0.4, |ay|=0.6, |as| = 0.4, |as| = 0.6, \;= — 2.5, \,=

-1, N3=1.3, N\=0, as=—3%_,a,; |l(ro)|=0.05 and
|¢(ro)|=0.1, for all /#4, y1(ro) =Ny, ¥2(ro) =Xz, ¥a(ro)=\s,
v4(ro) =N4+1.6708, y5(rg)=\s5, andro=1. (c) N=5 with all
a,/'s and|Z,(rg)|’s as in Fig. 2 but withy,(ro)=\,+1.6708 for
all 1s/<5.(d) N=5, |a;|=0.4,|ay|=0.6,|a3| =0.4,|a,| = 0.5,
)\1:72.5, )\2:71, )\3:1.3, )\4:0, a5=72j21a/; |§4(I’0)|

=0.05 and|{,(ro)|=0.1, for all /#4, y1(rg)=N\1, y2(rg) =\,
¥3(ro) =N3, va(ro) =As+1.8708,y5(rg) =\s, andro=1.

of this, the two gaps merge and the two arguments approach
the same value which is neithag nor A4, as may be ob-
served in Fig. ).

In order to study the validity of the conditiofb1) with-
out having merging arguments, we tried an initial condition
with N=5 poles for which\{<A,<A3<Ns<A\s, v1(ro)
<y2(ro) <¥a(ro)<va(ro)<vs(ro), and copy,(ro)—A\,]
<0 for all 1=/<5. The results are shown in Fig(c3. In
this case the conditiorf51) is satisfied for all the poles
(cody,(rg) —\,]=—0.1 andh(Y a9 =~ — 0.247 and we ob-
serve smooth interfaces for all times.

We show in Fig. 8) an example in which a cusp devel-
ops. The initial condition is similar to that of Fig(l3, but in
this casel, does not satisfy the conditioid1) [ cOSlys—N\4)
~—0.296 andh(yma)=~—0.178. Therefore the evolution
agrees with what we expect from this condition.

In summary, the examples we show in Fig. 3 are such that

cussion, we expect this initial condition to lead to smooththe interfaces remain smooth if the poles either satisfy
interfaces for all times. In fact, this is what we observe in thecos(, —\ ,)>0 or cosf,—\,)<0 and condition (51).
numerical simulation, as shown in Fig(a3 where we see On the other hand, if there is at least one pole such that
smooth nonsymmetric interfaces. In this case the asymptotigos(y, —\ ,) <0 and condition51) is not satisfied, then the

behavior is well described by Eq€l9)—(22), as also illus-

interface develops a cusp. Furthermore, we have observed

trated by Fig. 4a), where we observe how three of the argu-the same type of behavior for all the initial conditions we

ments approach the corresponding’s (indicated with
dashed lineswhile |{|—1.

tried, regardless of the number of poles. This suggests that
the conditions found in the preceding section might apply

Figure 3b) also corresponds to a situation with five poles, even if the model is not a very good approximation.

but in this case the argument of one of thefy, satisfies

cos(y,—N\4)<0. The parameters are such that the condition

(51) is satisfied[coslys,—Ns)>—0.1 and h(ya) <—0.2].

VIl. CONCLUSIONS

Also in this case we observe that the interface remains We have studied the process of two-dimensional Laplac-
smooth for all times. Now, this is an example in which theian growth in the limit of zero-surface tension for cases with

asymptotic behavior is not described by Ed&9)—(22),
since the arguments of two of the polég,and{,, approach

a closed interface surrounding a growing bubble. We have
used the time-dependent conformal map technique to obtain

the same value, as shown in Figh#t The merging of the a class of fingerlike solutions. These solutions are similar to
two arguments results in the merging of the two correspondthose previously found in a different geometinfinite or

ing gaps, as we can see in FighB It is relatively easy to

periodic, but not closed, interfacgl4,15. They are charac-

understand why this happens in terms of the initial conditionterized by a finite number of poles and they are a nonsym-

In this case\ ;>\, while y3(rg) < vya(ro). If we assume that

metric generalization of the solutions presented in REJ],
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which were limited to specific symmetries. infinite-dimensional ones. The existence of a particular class
The study of Laplacian growth is relevant for a variety of of solutions that allows the reduction of the system, while
physical processes observed both in laboratory experimenteeping the main properties of its evolution, provides a
and in natural systems, a particular example of which is visunique opportunity of achieving this goal in the present case.
cous fingering. Now, the assumption of zero-surface tensioMoreover, as in the infinite line and channel geometry cases
is a major limitation of the model. In fact, most solutions [14], the reduced system of equations is completely inte-
studied in the pagisee, e.g.[12]) were observed to develop grable, providing an easy description of the evolution. In this
finite-time singularities. As a rule, such singularities wouldregard, theN-finger solution(10) is similar to theN-soliton
not appear in the presence of surface tension, since its masvlutions of integrable nonlinear partial differential equa-
effect is to prevent the development of small length-scaldgions.
instabilities. Therefore, in those cases, the zero-surface ten- As in the infinite line and channel geometry ca#4],
sion solution is meaningless and does not provide a goodny smooth initial interface can be approximated, to any de-
representation of the actual evolution. In this paper we havgree of accuracy, by an expression of the fqif). Thus,
studied under which conditions the nonsymmetric fingerlikethe class of solutions described by EfQ) is, in some sense,
solution described by Eq10) remains smooth for all times. a nonlinear basis into which any solution of the LGE could
Using a simplified model we have found some sufficient conte spanned. Now, the choice Wfand the variousy,’s and
ditions that guarantee this behavior and others under whicli, (0)’s is notunique. We expect that a model with nonzero-
the interface becomes singular at a finite time. Apparenthsurface tension should overcome this selection problem. This
these sufficient conditions are also meaningful in cases fodoes not imply that our zero-surface tension solutions are
which the simplified model assumptions do not hold. In fact,useless. Consider, for example, the case of slightly perturbed
we have observed this in numerical integrations of the soluintegrable nonlinear PDE’s: the soliton solutions of the inte-
tion (10). We have found that whenever each pole satisfies grable equations can be used to reduce the analysis of the
sufficient condition for the interface to remain smooth, theperturbed ones to a set of ODE’s. In some sense, the soliton
solution does not become singular. On the other hand, i§olutions still form a “good nonlinear basis” to study the
there is one pole that satisfies the sufficient condition for thenonintegrable evolution. We expect a similar situation to
development of cusps, then a cusp indeed occurs. Similarliold in our case. Furthermore, the effects of noise on the
to what happens in the infinite line or channel geometryprocess of flame propagation have recently been studied in
cases[14], solutions that remain smooth for all times can terms of the dynamics of a finite number of po[@§]. This
reproduce various phenomena observed in experiments, suelas possible because the model equations had a particular
as tip splitting, coarsening, and screeni8$§ Therefore they solution that could be written in terms of a finite number of
provide a good model of the observed evolution. poles. We think a similar analysis could also be done in our
One of the interesting properties of these solutions is thease. For these reasons we believe that the solutions we have
fact that they are described in terms of a finite number ofound are meaningful even when surface tension is included.
time-dependent variableghe poles{,, 1<k=<N). There- Thus determining when they remain smooth for all times is
fore the evolution is determined by a finite set of ordinaryrelevant in this more general setting.
differential equation§ODE’s) instead of the original partial
d!fferen.tlal equanor(PDE) (8). The descnpuqn_ of infinite- ACKNOWLEDGMENTS
dimensional dynamical systems in terms of finite numbers of
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